Median of K numbers is defined as the (K/2)th smallest number, if K is even; and the ((K+1)/2)th smallest number if K is odd. For example,
median of the 4 numbers: 2 1 8 7 is the 2nd smallest number i.e. 2,
and the median of the 5 numbers: 2 1 8 7 6 is the 3rd smallest number i.e. 6.
In this problem, you'll be given N numbers. Let the kth median or m(k) be defined as the median of the first k numbers (1<=k<=N). i.e. the 5th median or m(5) is the median of the first 5 numbers, the 8th median or m(8) is the median of the first 8 numbers, etc. In other words, let Ai denote the ith number, then the kth median or m(k) is defined as the median of the numbers A1,A2,…,AK.
Your task is to find m(1) + m(2) + m(3) + ...+ m(n) Output the answer modulo 100000 (10^5).
INPUT:
There is only one test case. The first line contains N, the count of numbers. N lines follow, each containing one number.
OUTPUT:
Output a single line, containing the sum of the medians.
CONSTRAINTS:
1<=N<=100000
0<=each number Ni<=100000
m(1)=median of [ 10 ]=10 m(2)=median of [ 10 5 ]=5 m(3)=median of [ 10 5 1 ]=5 m(4)=median of [ 10 5 1 2 ]=2 m(5)=median of [ 10 5 1 2 15 ]=5 ( m(1) + m(2) + m(3) + m(4) + m(5) ) % 100000=27