Unlock skill-first hiring with HackerEarth today

Learn more
piller_image

Collections and Defaultdict in Python

NSA whistleblower in exile, Edward Snowden, talks about how FBI could have reviewed 650K emails in less than 8 days!

snowden_tweet

Snowden says the FBI could have used hashing to identify emails that were not copies of ones they had already seen. Few things capture people’s interest like alleged conspiracies and political intrigue, yes? I’m no different. But what interests more is hashing. Touted by many as the “greatest idea in programming,” hashing, which involves the hash function, helps you find, say A, stored somewhere, say B. For example, the organizing and accessing of names and numbers in your “can’t bear to be parted from” smartphone.

Hashing is a technique where a data-structure called the “hash map” is implemented. This structure is an associative array where specific keys are mapped to specific values. A hash function is then used to compute an index into an array of buckets or slots from which the desired value can be found. The result is that (key, value) lookups are extremely fast and more efficient than searches based on popular trees like BST. To get in-depth knowledge about hashing, I recommend that you can go through our “Basics of Hash Tables” in our practice section.

Almost all modern languages have hashing implemented at the language level. In Python, hashing is implemented using the dictionary data structure, which is one of the basic data structures a beginner in Python learns. If you have only been using the dict module implementation in your code, I suggest you look at other implementations like defaultdicts and ordereddicts and use them more frequently in your code. Here, we will look more closely into the defaultdict module.

Defaultdicts come in the Collections internal library. Collections contains alternatives to the general purpose Python containers like dict, set, list, and tuple. Kind of like the Dark Knight is the more interesting “implementation” of Bruce Wayne.

burger

Defaultdict is subclassed from the built-in dict module. You may have encountered the following common uses cases for which you have been using the default container.

Building nested dicts or JSON type constructs:

JSON is a very popular data structure. One of the major use cases for a JSON is creating web APIs. JSON also neatly corresponds to our dict object. A sample JSON object could look like this.

{"menu":
    {"id": "file",
    "value": "File",
    "popup": {
        "menuitem": [
        {"value": "New", "onclick": "CreateNewDoc()"},
        {"value": "Open", "onclick": "OpenDoc()"},
        {"value": "Close", "onclick": "CloseDoc()"}
    ]}
}}

Source:http://json.org/example.html.

We cannot create a json file by using the following command; it will throw a KeyError.

some_dict = {}
some_dict["menu"]["popup"]["value"] = "New"

So, we will have to write complicated error handling code to handle this KeyError.

This way of writing is considered un-Pythonic. In its place, try out the following construct.

import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
# below will create non existent keys
some_dict["menu"]["popup"]["value"] = "New"

A defaultdict is initialized with a function (“default factory”) that takes no arguments and provides the default value for a non-existent key. A defaultdict will never raise a KeyError. Any key that does not exist gets the value returned by the default factory.

Please ensure that you pass function objects to defaultdict. Do not call the function, that is, defaultdict(func), not defaultdict(func()).

Let’s check out how it works.

ice_cream = collections.defaultdict(lambda: 'Vanilla')
ice_cream['Sarah'] = 'Chunky Monkey'
ice_cream['Abdul'] = 'Butter Pecan'
print(ice_cream['Sarah']) # out: 'Chunky Monkey'
print(ice_cream['Joe']) # out: 'Vanilla

Having cool default values:

Another fast and flexible use case is to use itertools.repeat() which can supply any constant value.

import itertools
def constant_factory(value):
    return itertools.repeat(value).next
d = collections.defaultdict(constant_factory(''))
d.update(name='John', action='ran')
print('%(name)s %(action)s to %(object)s' % d)

This should print out “John ran to.” As you can observe, the “object” variable gracefully defaulted to an empty string.

Performance:

Like you see in this stackoverflow post, we tried to do a similar benchmarking only between dicts(setdefault) and defaultdict. You can see it  here: https://github.com/infinite-Joy/hacks/blob/master/defaultdict_benchmarking.ipynb

from collections import defaultdict

try:
    t=unichr(100)
except NameError:
    unichr=chr

def f1(li):
    '''defaultdict'''
    d = defaultdict(list)
    for k, v in li:
        d[k].append(v)
    return d.items()

def f2(li):
    '''setdefault'''
    d={}
    for k, v in li:
        d.setdefault(k, []).append(v)
    return d.items()


if __name__ == '__main__':
    import timeit
    import sys
    print(sys.version)
    few=[('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
    fmt='{:>12}: {:10.2f} micro sec/call ({:,} elements, {:,} keys)'
    for tag, m, n in [('small',5,10000), ('medium',20,1000), ('bigger',1000,100), ('large',5000,10)]:
        for f in [f1,f2]:
            s = few*m
            res=timeit.timeit("{}(s)".format(f.__name__), setup="from __main__ import {}, s".format(f.__name__), number=n)
            st=fmt.format(f.__doc__, res/n*1000000, len(s), len(f(s)))
            print(st)
            s = [(unichr(i%0x10000),i) for i in range(1,len(s)+1)]
            res=timeit.timeit("{}(s)".format(f.__name__), setup="from __main__ import {}, s".format(f.__name__), number=n)
            st=fmt.format(f.__doc__, res/n*1000000, len(s), len(f(s)))
            print(st)
        print()

Below is the output that I got on my machine using Anaconda.

3.5.2 |Anaconda 4.1.1 (32-bit)| (default, Jul  5 2016, 11:45:57) [MSC v.1900 32 bit (Intel)]
 defaultdict:       5.48 micro sec/call (25 elements, 3 keys)
 defaultdict:      11.20 micro sec/call (25 elements, 25 keys)
  setdefault:       7.80 micro sec/call (25 elements, 3 keys)
  setdefault:       8.97 micro sec/call (25 elements, 25 keys)

 defaultdict:      14.66 micro sec/call (100 elements, 3 keys)
 defaultdict:      42.19 micro sec/call (100 elements, 100 keys)
  setdefault:      26.71 micro sec/call (100 elements, 3 keys)
  setdefault:      34.78 micro sec/call (100 elements, 100 keys)

 defaultdict:     623.21 micro sec/call (5,000 elements, 3 keys)
 defaultdict:    2207.91 micro sec/call (5,000 elements, 5,000 keys)
  setdefault:    1329.99 micro sec/call (5,000 elements, 3 keys)
  setdefault:    3076.57 micro sec/call (5,000 elements, 5,000 keys)

 defaultdict:    4625.00 micro sec/call (25,000 elements, 3 keys)
 defaultdict:   15950.98 micro sec/call (25,000 elements, 25,000 keys)
  setdefault:    6907.47 micro sec/call (25,000 elements, 3 keys)
  setdefault:   17605.08 micro sec/call (25,000 elements, 25,000 keys)

Following are  the broad inferences that can be made from the data:

1. defaultdict is faster and simpler with small data sets.
2. defaultdict is faster for larger data sets with more homogenous key sets.
3. setdefault has an advantage over defaultdict if we consider more heterogeneous key sets.

Note: The results have been taken by running it on my machine with Python 3.5 implementation of Anaconda. I strongly recommend you to not follow these blindly. Do your own benchmarking tests with your own data before implementing your algorithm.

Now that we have discussed the DefaultDict module, I hope that you are already thinking of using it more and also refactoring your code base to implement this module more. Next, I’ll be coming up with a detailed discussion on the Counter module.

References:
stackoverflow, How are Python’s Built In Dictionaries Implemented
stackoverflow, Is a Python dictionary an example of a hash table?e
python.org, Dictionary in Python
python.org, Python3 docs, collections — Container datatypes
python.org, Python2 docs, collections — Container datatypes
accelebrate, Using defaultdict in Python

Hackerearth Subscribe

Get advanced recruiting insights delivered every month

Related reads

The Impact of Talent Assessments on Reducing Employee Turnover
The Impact of Talent Assessments on Reducing Employee Turnover

The Impact of Talent Assessments on Reducing Employee Turnover

Organizations of all industries struggle with employee turnover. The high turnover rates cause increased hiring costs, lost productivity, and broken team dynamics. That’s…

Virtual Recruitment Events: A Complete Guide
Virtual Recruitment Events: A Complete Guide

Virtual Recruitment Events: A Complete Guide

Virtual hiring events are becoming vital for modern recruitment, and the hiring world is changing rapidly. As businesses embrace remote-first cultures and global…

The Role of Recruitment KPIs in Optimizing Your Talent Strategy
The Role of Recruitment KPIs in Optimizing Your Talent Strategy

The Role of Recruitment KPIs in Optimizing Your Talent Strategy

The competition for talent today is intense, and this makes it very important for organizations to get the right people on board. However,…

Interview as a Service – Optimizing Tech Hiring for Efficient Recruitment
Interview as a Service – Optimizing Tech Hiring for Efficient Recruitment

Interview as a Service – Optimizing Tech Hiring for Efficient Recruitment

Hiring trends are continuously evolving over the ages to keep pace with the latest technological advances. Hiring processes are being optimized almost every…

HR Scorecards: Using Metrics to Improve Hiring and Workforce Management
HR Scorecards: Using Metrics to Improve Hiring and Workforce Management

HR Scorecards: Using Metrics to Improve Hiring and Workforce Management

Hiring practices have changed significantly over the past 30 years. Technological advancements and changing workforce demographics have driven hirers to strike the right…

Why Recruiting Analytics is Critical for Hiring Success in 2024
Why Recruiting Analytics is Critical for Hiring Success in 2024

Why Recruiting Analytics is Critical for Hiring Success in 2024

In the current world, where the hiring process is ever-evolving, it has become crucial to make the right hiring decisions based on certain…

Hackerearth Subscribe

Get advanced recruiting insights delivered every month

View More

Top Products

Hackathons

Engage global developers through innovation

Hackerearth Hackathons Learn more

Assessments

AI-driven advanced coding assessments

Hackerearth Assessments Learn more

FaceCode

Real-time code editor for effective coding interviews

Hackerearth FaceCode Learn more

L & D

Tailored learning paths for continuous assessments

Hackerearth Learning and Development Learn more