Unlock skill-first hiring with HackerEarth today
Learn moreLeverage machine learning to amplify your social impact
“Data is abundant and cheap but knowledge is scarce and expensive.”
In the last few years, there has been a data revolution that has transformed the way we source, capture, and interact with data. From fortune 500 firms to start-ups, healthcare to fintech, machine learning and data science have become an integral part of everyday operations of most companies. Of all the sectors, the social good sector has not seen the push the other sectors have. It is not that the machine learning and data science techniques don’t work for this sector, but the lack of financial support and staff has stopped them from creating their special brand of magic here.
At HackerEarth, we intend to tackle this issue by sponsoring machine learning and data science challenges for social good.
Machine learning at HackerEarth
Even though machine learning (ML) is a new wing at HackerEarth, this is the fastest growing unit in the company. Also, over the past year, we have grown to a community of 200K+ machine learning and data science enthusiasts. We have conducted 50+ challenges across sectors with an average of 6500+ people participating in each.
The initiative
The “Machine Learning Challenges for Social Good” initiative is focused toward bringing interesting real-world data problems faced by nonprofits and governmental and non-governmental organizations to the machine learning and data science community’s notice. This is a win-win for both communities because the nonprofits and governmental and non-governmental organizations get their challenges addressed, and the machine learning and data science community gets to hone their skills while being agents of change.
Our role
HackerEarth will contribute by
- Working with the organizations to identify and prepare the data set most suitable for the initiative
- Hosting the challenge which includes the following (but not limited to)
- Creating a problem statement with the given dataset
- Finding support data sets if required
- Framing the best evaluation metric to choose the winners
- Promoting this to our developer community and inviting programmers to contribute to the cause
- Sharing the winning approaches and ML models built, which the organizations can use
- Sponsoring prizes
Are you a nonprofit or a governmental/non-governmental organization with a business/social problem for which primary or secondary data is available? If yes, please mail us at social@hackerearth.com. [Please use subject line “Reg: Machine Learning for Social Good | {Your Organization Name}]
Get advanced recruiting insights delivered every month
Related reads
Top 10 HR Competencies to Build a Strong HR Department: A Comprehensive Guide
Introduction In today’s dynamic workplaces, a strong HR department is no longer a luxury – it’s a necessity. HR professionals play a crucial…
8 Steps for Conducting a Job Tasks Analysis: A Complete Guide
Job task analysis is a crucial process for understanding the specific duties and skills required for a particular role. By incorporating insights from…
Top 8 Sourcing Tools for Recruiters: A Comprehensive Guide
In today’s competitive talent landscape, attracting top candidates requires going beyond traditional job board postings. This is where effective sourcing tools comes into…
The 12 Most Effective Employee Selection Methods: A Comprehensive Guide
Finding the perfect fit for your team can feel like searching for a unicorn. But fret not, fellow recruiters! Here’s where employee selection…
12 Important Recruiting Metrics You Should Know
Recruitment forms a strong foundation to build an effective team. However, do you know if your recruitment strategy is working or not? This…
7 Modern Performance Appraisal Methods to Boost Workforce Development
Introduction Performance appraisal has seen a tremendous change over the years. It is no longer just a grading of employees once in a…