You are given a function \(f(n) = 2 \times 7^{n/2} \times \cos(n\theta) + n \times 4^n\), where \(\theta = \tan^{-1}{\frac{\sqrt3}{2}}\).
You are also given two integers \(p\) and \(q\). Your task is to find the value of \(\sum _\limits{n=p}^{n=q}f(n)\) (modulo \(10^9+21\)).
Input format
Output format
Print \(T\) lines each containing a single integer corresponding to the required value \(\sum _\limits{n=p}^{n=q}f(n)\). Print the answer modulo \(10^9+21\).
Constraints
\(1\le T \le 10^2\\ 0\le p \le q \le 10^{18}\)
\(f(0)=2\\ f(1)=8\\ S=f(0)+f(1)=10\)