Minimum additions

2.5

73 votes
Arrays, Data Structures, 1-D
Problem

You are given an array A of N positive integers. Your task is to add a minimum number of non-negative integers to the array such that the floor of an average of array A becomes less than or equal to K.

The floor of an average of array A containing N integers is equal to Ni=1AiN. Here . is the floor function. You are given T test cases.

Input format

  • The first line contains a single integer T that denotes the number of test cases. For each test case:
    • The first line contains two space-separated integers N and K denoting the length of the array and the required bound.
    • The second line contains N space-separated integers denoting the integer array A

Output format

For each test case (in a separate line), print the minimum number of non-negative integers that should be added to array A such that the floor of an average of array A is less than or equal to K.

Constraints

1T101N2×1051A[i]1090K109

Time Limit: 1
Memory Limit: 256
Source Limit:
Explanation

In the first test case, we have N=2K=1A=[3,1]. The current floor of average of A is 3+12=2>K.

If we add the element 1 to the array, the array becomes [3,1,1]. The floor of average of A is 3+1+13=1K. Therefore, the minimum number of non-negative integers we need to add in this case is 1.

In the second test case, we have N=2K=2A=[2,1]. The current floor of average of A is 2+12=1K. Therefore, we don't need to add any non-negative integer to A.

 

Editor Image

?