You are given a pseudocode that determines the value of the following function \(f(p,q,n)\):
def f(p,q,n):
ans=0
for (i from 1 to n) // for loop1
for (all primes m between p and q ) // for loop2(both p and q inclusive)
for (j from 1 to (n/i) ) // for loop3((n/i) does integer division)
for (all divisors d of (m*j) ) // for loop4
val = ftemp(d)/d // Not a integer division
if(j is odd)
ans = ans - val*m*j
else
ans = ans + val*m*j
return ans
def ftemp(d):
if(d==1)
return 1
temp = 0
for (all prime factors p of d)
if( d%(p*p) ==0 ) return 0;
temp = temp+1
if (temp is even)
return 1
return -1
It can take a large amount of time to write and execute such a lengthy code. Your task is to determine the value of function \(f(p,q,n)\). The value must be modulo \(1000000007\).
Input format
Output format
For each test case, print a single line containing answer.\(f(p,q,n) \mod (10^9+7)\).
Constraints
\(1 \le t \le 10 \)
\(2< p<q<10^5\)
\(1 \le n \le 10^9\)
Substituting the value gives -224